Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of a hydrolyzable tannin, oenothein B, as an aluminum-detoxifying ligand in a highly aluminum-resistant tree, Eucalyptus camaldulensis.

Identifieur interne : 002176 ( Main/Exploration ); précédent : 002175; suivant : 002177

Identification of a hydrolyzable tannin, oenothein B, as an aluminum-detoxifying ligand in a highly aluminum-resistant tree, Eucalyptus camaldulensis.

Auteurs : Ko Tahara [Japon] ; Koh Hashida ; Yuichiro Otsuka ; Seiji Ohara ; Katsumi Kojima ; Kenji Shinohara

Source :

RBID : pubmed:24381064

Descripteurs français

English descriptors

Abstract

Eucalyptus camaldulensis is a tree species in the Myrtaceae that exhibits extremely high resistance to aluminum (Al). To explore a novel mechanism of Al resistance in plants, we examined the Al-binding ligands in roots and their role in Al resistance of E. camaldulensis. We identified a novel type of Al-binding ligand, oenothein B, which is a dimeric hydrolyzable tannin with many adjacent phenolic hydroxyl groups. Oenothein B was isolated from root extracts of E. camaldulensis by reverse-phase high-performance liquid chromatography and identified by nuclear magnetic resonance and mass spectrometry analyses. Oenothein B formed water-soluble or -insoluble complexes with Al depending on the ratio of oenothein B to Al and could bind at least four Al ions per molecule. In a bioassay using Arabidopsis (Arabidopsis thaliana), Al-induced inhibition of root elongation was completely alleviated by treatment with exogenous oenothein B, which indicated the capability of oenothein B to detoxify Al. In roots of E. camaldulensis, Al exposure enhanced the accumulation of oenothein B, especially in EDTA-extractable forms, which likely formed complexes with Al. Oenothein B was localized mostly in the root symplast, in which a considerable amount of Al accumulated. In contrast, oenothein B was not detected in three Al-sensitive species, comprising the Myrtaceae tree Melaleuca bracteata, Populus nigra, and Arabidopsis. Oenothein B content in roots of five tree species was correlated with their Al resistance. Taken together, these results suggest that internal detoxification of Al by the formation of complexes with oenothein B in roots likely contributes to the high Al resistance of E. camaldulensis.

DOI: 10.1104/pp.113.222885
PubMed: 24381064
PubMed Central: PMC3912098


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of a hydrolyzable tannin, oenothein B, as an aluminum-detoxifying ligand in a highly aluminum-resistant tree, Eucalyptus camaldulensis.</title>
<author>
<name sortKey="Tahara, Ko" sort="Tahara, Ko" uniqKey="Tahara K" first="Ko" last="Tahara">Ko Tahara</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687</wicri:regionArea>
<wicri:noRegion>Ibaraki 305-8687</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hashida, Koh" sort="Hashida, Koh" uniqKey="Hashida K" first="Koh" last="Hashida">Koh Hashida</name>
</author>
<author>
<name sortKey="Otsuka, Yuichiro" sort="Otsuka, Yuichiro" uniqKey="Otsuka Y" first="Yuichiro" last="Otsuka">Yuichiro Otsuka</name>
</author>
<author>
<name sortKey="Ohara, Seiji" sort="Ohara, Seiji" uniqKey="Ohara S" first="Seiji" last="Ohara">Seiji Ohara</name>
</author>
<author>
<name sortKey="Kojima, Katsumi" sort="Kojima, Katsumi" uniqKey="Kojima K" first="Katsumi" last="Kojima">Katsumi Kojima</name>
</author>
<author>
<name sortKey="Shinohara, Kenji" sort="Shinohara, Kenji" uniqKey="Shinohara K" first="Kenji" last="Shinohara">Kenji Shinohara</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24381064</idno>
<idno type="pmid">24381064</idno>
<idno type="doi">10.1104/pp.113.222885</idno>
<idno type="pmc">PMC3912098</idno>
<idno type="wicri:Area/Main/Corpus">002350</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002350</idno>
<idno type="wicri:Area/Main/Curation">002350</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002350</idno>
<idno type="wicri:Area/Main/Exploration">002350</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of a hydrolyzable tannin, oenothein B, as an aluminum-detoxifying ligand in a highly aluminum-resistant tree, Eucalyptus camaldulensis.</title>
<author>
<name sortKey="Tahara, Ko" sort="Tahara, Ko" uniqKey="Tahara K" first="Ko" last="Tahara">Ko Tahara</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687</wicri:regionArea>
<wicri:noRegion>Ibaraki 305-8687</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hashida, Koh" sort="Hashida, Koh" uniqKey="Hashida K" first="Koh" last="Hashida">Koh Hashida</name>
</author>
<author>
<name sortKey="Otsuka, Yuichiro" sort="Otsuka, Yuichiro" uniqKey="Otsuka Y" first="Yuichiro" last="Otsuka">Yuichiro Otsuka</name>
</author>
<author>
<name sortKey="Ohara, Seiji" sort="Ohara, Seiji" uniqKey="Ohara S" first="Seiji" last="Ohara">Seiji Ohara</name>
</author>
<author>
<name sortKey="Kojima, Katsumi" sort="Kojima, Katsumi" uniqKey="Kojima K" first="Katsumi" last="Kojima">Katsumi Kojima</name>
</author>
<author>
<name sortKey="Shinohara, Kenji" sort="Shinohara, Kenji" uniqKey="Shinohara K" first="Kenji" last="Shinohara">Kenji Shinohara</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (drug effects)</term>
<term>Aluminum (toxicity)</term>
<term>Biological Transport (drug effects)</term>
<term>Chromatography, High Pressure Liquid (MeSH)</term>
<term>Eucalyptus (drug effects)</term>
<term>Eucalyptus (physiology)</term>
<term>Hydrolyzable Tannins (chemistry)</term>
<term>Hydrolyzable Tannins (metabolism)</term>
<term>Inactivation, Metabolic (MeSH)</term>
<term>Ligands (MeSH)</term>
<term>Meristem (drug effects)</term>
<term>Meristem (metabolism)</term>
<term>Plant Extracts (metabolism)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (metabolism)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Trees (drug effects)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (effets des médicaments et des substances chimiques)</term>
<term>Aluminium (toxicité)</term>
<term>Arbres (effets des médicaments et des substances chimiques)</term>
<term>Arbres (physiologie)</term>
<term>Chromatographie en phase liquide à haute performance (MeSH)</term>
<term>Eucalyptus (effets des médicaments et des substances chimiques)</term>
<term>Eucalyptus (physiologie)</term>
<term>Extraits de plantes (métabolisme)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Inactivation métabolique (MeSH)</term>
<term>Ligands (MeSH)</term>
<term>Méristème (effets des médicaments et des substances chimiques)</term>
<term>Méristème (métabolisme)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Tanins hydrolysables (composition chimique)</term>
<term>Tanins hydrolysables (métabolisme)</term>
<term>Transport biologique (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Hydrolyzable Tannins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Hydrolyzable Tannins</term>
<term>Plant Extracts</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Aluminum</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Tanins hydrolysables</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Biological Transport</term>
<term>Eucalyptus</term>
<term>Meristem</term>
<term>Plant Leaves</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Arbres</term>
<term>Eucalyptus</term>
<term>Feuilles de plante</term>
<term>Méristème</term>
<term>Transport biologique</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Meristem</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Extraits de plantes</term>
<term>Feuilles de plante</term>
<term>Méristème</term>
<term>Tanins hydrolysables</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Eucalyptus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Eucalyptus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Aluminium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, High Pressure Liquid</term>
<term>Inactivation, Metabolic</term>
<term>Ligands</term>
<term>Reproducibility of Results</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chromatographie en phase liquide à haute performance</term>
<term>Inactivation métabolique</term>
<term>Ligands</term>
<term>Reproductibilité des résultats</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Eucalyptus camaldulensis is a tree species in the Myrtaceae that exhibits extremely high resistance to aluminum (Al). To explore a novel mechanism of Al resistance in plants, we examined the Al-binding ligands in roots and their role in Al resistance of E. camaldulensis. We identified a novel type of Al-binding ligand, oenothein B, which is a dimeric hydrolyzable tannin with many adjacent phenolic hydroxyl groups. Oenothein B was isolated from root extracts of E. camaldulensis by reverse-phase high-performance liquid chromatography and identified by nuclear magnetic resonance and mass spectrometry analyses. Oenothein B formed water-soluble or -insoluble complexes with Al depending on the ratio of oenothein B to Al and could bind at least four Al ions per molecule. In a bioassay using Arabidopsis (Arabidopsis thaliana), Al-induced inhibition of root elongation was completely alleviated by treatment with exogenous oenothein B, which indicated the capability of oenothein B to detoxify Al. In roots of E. camaldulensis, Al exposure enhanced the accumulation of oenothein B, especially in EDTA-extractable forms, which likely formed complexes with Al. Oenothein B was localized mostly in the root symplast, in which a considerable amount of Al accumulated. In contrast, oenothein B was not detected in three Al-sensitive species, comprising the Myrtaceae tree Melaleuca bracteata, Populus nigra, and Arabidopsis. Oenothein B content in roots of five tree species was correlated with their Al resistance. Taken together, these results suggest that internal detoxification of Al by the formation of complexes with oenothein B in roots likely contributes to the high Al resistance of E. camaldulensis. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24381064</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>164</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of a hydrolyzable tannin, oenothein B, as an aluminum-detoxifying ligand in a highly aluminum-resistant tree, Eucalyptus camaldulensis.</ArticleTitle>
<Pagination>
<MedlinePgn>683-93</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.113.222885</ELocationID>
<Abstract>
<AbstractText>Eucalyptus camaldulensis is a tree species in the Myrtaceae that exhibits extremely high resistance to aluminum (Al). To explore a novel mechanism of Al resistance in plants, we examined the Al-binding ligands in roots and their role in Al resistance of E. camaldulensis. We identified a novel type of Al-binding ligand, oenothein B, which is a dimeric hydrolyzable tannin with many adjacent phenolic hydroxyl groups. Oenothein B was isolated from root extracts of E. camaldulensis by reverse-phase high-performance liquid chromatography and identified by nuclear magnetic resonance and mass spectrometry analyses. Oenothein B formed water-soluble or -insoluble complexes with Al depending on the ratio of oenothein B to Al and could bind at least four Al ions per molecule. In a bioassay using Arabidopsis (Arabidopsis thaliana), Al-induced inhibition of root elongation was completely alleviated by treatment with exogenous oenothein B, which indicated the capability of oenothein B to detoxify Al. In roots of E. camaldulensis, Al exposure enhanced the accumulation of oenothein B, especially in EDTA-extractable forms, which likely formed complexes with Al. Oenothein B was localized mostly in the root symplast, in which a considerable amount of Al accumulated. In contrast, oenothein B was not detected in three Al-sensitive species, comprising the Myrtaceae tree Melaleuca bracteata, Populus nigra, and Arabidopsis. Oenothein B content in roots of five tree species was correlated with their Al resistance. Taken together, these results suggest that internal detoxification of Al by the formation of complexes with oenothein B in roots likely contributes to the high Al resistance of E. camaldulensis. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tahara</LastName>
<ForeName>Ko</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hashida</LastName>
<ForeName>Koh</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Otsuka</LastName>
<ForeName>Yuichiro</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ohara</LastName>
<ForeName>Seiji</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kojima</LastName>
<ForeName>Katsumi</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shinohara</LastName>
<ForeName>Kenji</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047348">Hydrolyzable Tannins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010936">Plant Extracts</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>104987-36-2</RegistryNumber>
<NameOfSubstance UI="C080077">oenothein B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>CPD4NFA903</RegistryNumber>
<NameOfSubstance UI="D000535">Aluminum</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000535" MajorTopicYN="N">Aluminum</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005052" MajorTopicYN="N">Eucalyptus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047348" MajorTopicYN="N">Hydrolyzable Tannins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008658" MajorTopicYN="N">Inactivation, Metabolic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018519" MajorTopicYN="N">Meristem</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010936" MajorTopicYN="N">Plant Extracts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24381064</ArticleId>
<ArticleId IdType="pii">pp.113.222885</ArticleId>
<ArticleId IdType="doi">10.1104/pp.113.222885</ArticleId>
<ArticleId IdType="pmc">PMC3912098</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2001 Mar;125(3):1473-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11244126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fitoterapia. 2001 Jan;72(1):95-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11163955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Nov;145(3):843-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17885092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Aug;153(4):1678-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20538888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 May;138(1):297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15863697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):433-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21045123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18381-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20937890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 May;225(6):1447-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17171374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 May;139(1):68-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20059738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 May;99(1):263-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Sep;100(1):309-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16652962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Nov 15;183(10):6754-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19846877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cytol. 2007;264:225-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17964924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:459-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2010;11(1):79-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20162003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Oct;76(2):345-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23888867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Radioact. 2012 Jul;109:19-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22245682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Feb;107(2):315-321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Pharm Bull (Tokyo). 1989 Aug;37(8):2083-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2480850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Feb;41(3):353-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Feb;21(2):655-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19244140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2005 Sep;66(17):2001-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2001 Jul;57(6):915-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11423141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Jun;17(6):341-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22459757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1989 Sep;5(3):337-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jan;137(1):231-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 2005 Sep;99(9):1830-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16054220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Jun;52(359):1339-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11432953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cytol. 2000;200:1-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10965465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Jul;117(3):753-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9662518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(1):9-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20847099</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Hashida, Koh" sort="Hashida, Koh" uniqKey="Hashida K" first="Koh" last="Hashida">Koh Hashida</name>
<name sortKey="Kojima, Katsumi" sort="Kojima, Katsumi" uniqKey="Kojima K" first="Katsumi" last="Kojima">Katsumi Kojima</name>
<name sortKey="Ohara, Seiji" sort="Ohara, Seiji" uniqKey="Ohara S" first="Seiji" last="Ohara">Seiji Ohara</name>
<name sortKey="Otsuka, Yuichiro" sort="Otsuka, Yuichiro" uniqKey="Otsuka Y" first="Yuichiro" last="Otsuka">Yuichiro Otsuka</name>
<name sortKey="Shinohara, Kenji" sort="Shinohara, Kenji" uniqKey="Shinohara K" first="Kenji" last="Shinohara">Kenji Shinohara</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Tahara, Ko" sort="Tahara, Ko" uniqKey="Tahara K" first="Ko" last="Tahara">Ko Tahara</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002176 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002176 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24381064
   |texte=   Identification of a hydrolyzable tannin, oenothein B, as an aluminum-detoxifying ligand in a highly aluminum-resistant tree, Eucalyptus camaldulensis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24381064" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020